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Abstract. A consistent description of weakly bound and unbound nuclei requires an accurate description of
the particle continuum properties when carrying out multiconfiguration mixing. This is the domain of the
Gamow Shell Model (GSM) which is the multiconfigurational shell model in the complex k-plane formulated
using a complete Berggren ensemble representing bound single-particle (s.p.) states, s.p. resonances, and
non-resonant complex energy continuum states. We shall discuss the salient features of effective interactions
in weakly bound systems and show selected applications of the GSM formalism to p-shell nuclei. Finally, a
development of the new non-perturbative scheme based on Density Matrix Renormalization Group methods
to select the most significant continuum configurations in GSM calculations will be discussed shortly.

PACS. 21.60.Cs Shell model – 24.10.Cn Many-body theory – 27.20.+n Properties of specific nuclei listed
by mass ranges: 6 ≤ A ≤ 19

1 Introduction

The binding of nuclei close to the particle drip lines de-
pends sensitively both on the coupling to scattering states
and on the effective in-medium NN interaction which it-
self is modified by the continuum coupling [1]. Weakly
bound nuclei are best described in the open quantum sys-
tem formalism allowing for configuration mixing, such as
the real-energy continuum shell model (see ref. [2] for a re-
cent review) and, most recently, the complex-energy con-
tinuum Gamow Shell Model (GSM) [3,4,5,6,7] (see also
refs. [8,9]). GSM is the multi-configurational shell model
with a single-particle (s.p.) basis given by the Berggren
ensemble [10] which consists of Gamow (or resonant)
states and the complex non-resonant continuum. The s.p.
Berggren basis is generated by a finite-depth potential,
and the many-body states are obtained in shell-model cal-
culations as the linear combination of Slater determinants
spanned by resonant and non-resonant s.p. states. Hence,
both continuum effects and correlations between nucleons
are taken into account simultaneously. All details of the
formalism can be found in refs. [4,5], in which the GSM
was applied to many-neutron configurations in neutron-
rich helium, oxygen, and lithium isotopes.
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Even though the effective interaction theory for open
quantum many-body systems has not yet been developed
(see, however, recent attempts in ref. [11]), recent investi-
gations [12,13] in the framework of the Shell Model Em-
bedded in the Continuum (SMEC) [14,2] established ba-
sic features of the correction to the eigenenergy of the
closed quantum system due to the continuum coupling.
The novel feature, absent in the standard SM, is a strong
influence of the poles of the scattering (S) matrix on the
weakly bound/unbound states. In particular, for nucleons
in low-` orbits (` = 0, 1), the coupling becomes singular at
the particle emission threshold if the pole of the S-matrix
lies at the threshold [12,13]. Such a coupling may induce
the non-perturbative rearrangement of the wave function.
Below, we shall illustrate this effect in the case of spectro-
scopic factors of 0+ states in 6He.

2 Average spherical Gamow-Hartree-Fock

potential

In earlier studies [3,4], we have used the s.p. basis gen-
erated by a Woods-Saxon (WS) potential which was ad-
justed to reproduce the s.p. energies in 5He (“5He” pa-
rameter set [4]). This “5He” WS basis is unsuitable when
applied to the neutron-rich helium isotopes. Therefore, we
use an optimized Berggren basis given by the Hartree-Fock
(HF) method extended to unbound states (the so-called
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Gamow-Hartree-Fock (GHF) approach). This allows for a
more precise description of heavier p-shell nuclei in the
GSM calculations [5].

The spherical HF potential cannot be defined for open-
shell nuclei and one has to resort to approximations. The
first ansatz is the usual uniform-filling approximation in
which HF occupations are averaged over all magnetic
substates of an individual spherical shell. In the second
ansatz, the deformed HF potential corresponding to non-
zero angular momentum projection is averaged over all the
magnetic quantum numbers (the so-called M -potential).
For closed-shell nuclei, both methods yield the true HF
potential.

To define the M -potential, one occupies the s.p. states
in the valence shell that have the largest angular momen-
tum projections on the third axis. The resulting Slater de-
terminant corresponds to the angular momentum J = M .
For closed-shell nuclei (M = 0) and for nuclei with one
particle (or hole) outside a closed subshell (M = j), this
Slater determinant can be associated with the ground
state (g.s.) of the s.p. Hamiltonian. Spherical M -potential,
UM , is defined by averaging the resulting HF potential
over magnetic quantum number m:

〈α|UM |β〉 = 〈α|ĥ|β〉

+
1

Nl,j

j∑

m=j+1−Nl,j

∑

λ

〈αmλmλ|V̂ |βmλmλ〉, (1)

where ĥ is the s.p. Hamiltonian (given by a WS+Coulomb
potential), λ is an occupied shell with angular quantum
numbers (jλ, lλ), N(λ) is the number of nucleons occupy-

ing this shell, and V̂ is the residual shell-model interaction.
In the above expression, Nl,j is the number of nucleons oc-
cupying the valence shell with quantum numbers l, j.

While the HF procedure is well defined for the bound
states, it has to be modified for the unbound s.p. states
(resonant or scattering), even in the case of closed-shell nu-
clei. First, the effective nuclear two-body interaction has
to be quickly vanishing beyond a certain radius; other-
wise the resulting HF potential diverges, thus providing
incorrect s.p. asymptotics. Moreover, as resonant states
are complex, the resulting self-consistent HF potential is
complex as well. This is to be avoided, as the Berggren
completeness relation assumes a real potential. Therefore,
we take the real part of the GHF potential to generate the
s.p. basis.

3 Description of the Gamow Shell Model

calculation

3.1 Choice of the average potential, the Hamiltonian
and the valence space

For the residual interaction, we take a finite-range Surface
Gaussian Interaction (SGI) [7]:

VJ,T (r1, r2)=

V0(J, T ) · exp

[
−

(
r1−r2

µ

)2]
· δ(|r1|+|r2|−2 ·R0), (2)

which is used, together with the WS potential with the
“5He” parameter set, to generate an optimal GHF ba-
sis. The Hamiltonian employed can thus be written as:
Ĥ = Ĥ(1)+Ĥ(2), where Ĥ(1) is the one-body Hamiltonian
described above augmented by a hard sphere Coulomb po-
tential of radius R0 (corresponding to the 4He core), and

Ĥ(2) is the two-body interaction among valence particles,
which can be written as a sum of SGI and Coulomb terms.
The Coulomb two-body matrix elements are calculated us-
ing the exterior complex scaling as described in ref. [4] and
can be treated as precisely as nuclear terms.

The principal advantage of the SGI is that it is finite-
range, so no energy cutoff is needed. Moreover, the surface
delta term simplifies the calculation of two-body matrix
elements, because they can be reduced to one-dimensional
radial integrals. Consequently, a local adjustment of the
Hamiltonian parameters in GSM/GHF calculations be-
comes feasible.

In this chapter, the valence space for protons and neu-
trons consists of the 0p3/2 and 0p1/2 GHF resonant states,
calculated for each nucleus, and the {ip3/2} and {ip1/2}
(i = 1, · · · , n) complex and real continua generated by the
same potential. These continua extend from <[k] = 0 to
<[k] = 8 fm−1, and they are discretized with 14 points
(i.e., n = 14). The 0p1/2 resonance is taken into account
only if it is bound or very narrow; otherwise we take a real
{ip1/2} contour. Another continua, such as s1/2, d5/2, · · · ,
are neglected, as they can be chosen to be real and would
only induce a renormalization of the two-body interac-
tion. Altogether, we have 15 p3/2 and 14 or 15 p1/2 GHF
shells in the GSM calculation. Having defined a discretized
GHF basis, we construct the many-body Slater determi-
nants from all s.p. basis states (resonant and scattering),
keeping only those with at most two particles in the non-
resonant continuum. The weight of configurations involv-
ing more than two particles in the continuum is usually
quite small in the optimal GHF basis.

In the chain of helium isotopes, which are described
assuming an inert 4He core, there are only T = 1 two-
body matrix elements: (J = 0, T = 1) and (J = 2, T = 1).
We have adjusted V0(J = 0, T = 1) to reproduce the
experimental g.s. energy of 6He relative to the g.s. of
4He, whereas V0(J = 2, T = 1) has been fitted to all
g.s. energies from 7He to 10He. The adopted values are:
V0(J = 0, T = 1) = –403 MeV· fm3 and V0(J = 2, T =
1) = –315 MeV· fm3.

Our previous analysis of T = 0 two-body matrix ele-
ments in the chain of lithium isotopes suggests that they
are gradually reduced with an increasing number of va-
lence neutrons Nn [5]:

V0(J = 1, T = 0) = α10 [1− β10(Nn − 1)] ,

V0(J = 3, T = 0) = α30 [1− β30(Nn − 1)] ,

where α10 = −600 MeV fm3, β10 = −50 MeV fm3, α30 =
−625 MeV fm3, and β30 = −100 MeV fm3. This finding
agrees with the conclusion of recent SMEC studies of the
binding energy systematics in the sd-shell nuclei [12]. In
the SMEC, the reduction of the neutron-proton T = 0
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Table 1. Binding energies of the He isotopes (in MeV) calcu-
lated in the GSM using the GHF basis with the M -potential
are compared with experimental values.

Nucleus 6He 7He 8He 9He

BGSM (MeV) −0.984 −0.475 −3.740 −2.418
BExp (MeV) −0.972 −0.537 −3.112 −1.847

Table 2. The same as in table 1 but for the Li isotopes.

Nucleus 6Li 7Li 8Li 9Li

BGSM (MeV) −4.820 −13.008 −15.094 −20.181
BExp (MeV) −3.698 −10.948 −12.981 −17.044

interaction with respect to the neutron-neutron T = 1 in-
teraction is associated with a decrease in the one-neutron
emission threshold when approaching the neutron drip
line, i.e., it is a genuine continuum coupling effect. To
account for this effect in the standard Shell Model (SM),
one would need to introduce a N -dependence of the T = 0
monopole terms which comes about naturally if one in-
cludes three-body interactions into the two-body frame-
work of a standard SM [15]. The NN coupling via inter-
mediate scattering states contributes to three-body corre-
lations which are difficult to disentangle from effects gen-
erated by the genuine three-body force.

Tables 1 and 2 display binding energies of several He
and Li isotopes. The experimental binding energies rela-
tive to the 4He core are reproduced fairly well with the
SGI interaction. For instance, the g.s. of 6He and 8He are
bound, whereas g.s. of 5He and 7He are unbound. More-
over, the so-called helium anomaly, i.e., the presence of
the higher one- and two-neutron emission thresholds in
8He than in 6He, is well reproduced. Ground-state energies
of lithium isotopes relative to the g.s. energy of 4He are
described reasonably well, but clearly the particle-number
dependence of the matrix elements has to be further in-
vestigated in order to achieve a detailed description of
the data.

4 Effective interactions in weakly bound

systems

In the presence of explicit coupling to the scattering con-
tinuum, the treatment of many-body correlations poses a
challenge to traditional nuclear structure methods based
on SM, and to the derivation of effective interactions in the
space of bound states. For weakly bound nuclei, the nat-
ural basis for calculating in-medium effective interactions
is the complete Berggren basis. The effective interaction
consistent with the framework of GSM, depends on the
positions of various particle emission thresholds as well as
on the distribution and nature of the S-matrix poles.

The genuine features of the continuum coupling cor-
rection to the eigenenergy of the closed quantum system
near the one-particle emission threshold can be studied in

the framework of SMEC. (The description of the SMEC
formalism has been given elsewhere [14,2].) In this for-
malism, the total Hamiltonian H is divided into the “un-
perturbed” Hamiltonians HQQ and HPP in the subspaces
Q and P of (quasi-)bound (Q subspace) and scattering
(P subspace) states, respectively, and the coupling terms
HQP , HPQ between these subspaces. The “closed quan-
tum system” approximation is based on replacing H by
HQQ (the standard SM Hamiltonian). In the open quan-
tum formalism, the dynamics in Q subspace is described
by an energy-dependent effective Hamiltonian which in-
cludes the coupling to the scattering continuum:

Heff
QQ(E) = HQQ + HQPG

(+)
P (E)HPQ , (3)

where G
(+)
P (E) is a Green’s function for the motion of a

single nucleon in P subspace. The effective Hamiltonian
Heff
QQ is a complex-symmetric matrix for E above the par-

ticle emission threshold (E(thr)), and Hermitian below it.

An eigenvalue Ei(E) = Ei +E
(i)
corr of Heff

QQ(E) can be writ-
ten as a sum of a closed-system eigenenergy Ei given by
HQQ and the correction due to the coupling to the decay
channels, which depends on the distance of Ei from the
one-particle threshold.

In the one-channel case, and neglecting the off-

diagonal terms of HQPG
(+)
P (E)HPQ, the continuum cor-

rection to Ei can be studied analytically assuming a finite-
depth, square-well potential for HPP and replacing Q-P
couplings by a source term having a radial dependence,
which is consistent with the radial dependence of s.p. wave
functions which enter in the microscopic calculation of this
term [14]. A so-defined model can be rigorously solved [13]
to determine basic dependencies of the continuum correc-
tion to the eigenenergy of the closed system at the thresh-
old (E = 0), as a function of the distance ε of the eigen-
value of HPP (a pole of the S-matrix) from the one-body
continuum threshold. In the leading order in ε, one finds:

E(`)
corr(ε) = − const |ε|−1+`/2 +O

(
|ε|0
)
, (4)

i.e., the continuum correction at the threshold is singular
for ` = 0, 1 states in the limit of ε → 0, independently
of whether the considered S-matrix pole is a bound s.p.
state, a s.p. resonance or a virtual s.p. state [13]. In gen-
eral, this behavior leads to the rearrangement of a HF
particle vacuum and to the coexistence of two HF minima
with different configurations of the S-matrix poles around
the threshold. Moreover, the non-perturbative rearrange-
ment of GSM many-body wave functions with a significant
` = 0, 1 s.p. content is expected. Below, we will see an il-
lustration of this genuine behavior in the spectroscopic
factor of 6He. The discussion of effects of continuum cou-
pling on spin-orbit splitting in p-shell nuclei can be found
in refs. [13,16].

For higher `-values (` ≥ 2), even though the contin-
uum correction is often bigger than for ` = 0, 1 [12], a
singular dependence on the position of the S-matrix pole
is absent. Therefore, the continuum coupling for high-` or-
bitals can be mocked up in standard SM calculations by an
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adjustment of monopole terms in the effective interaction,
in particular, by introducing a suitable particle-number
dependence.

5 Spectroscopic factors: example of 6He

As discussed above, the coupling to the particle contin-
uum leads to a strong modification of wave functions in
weakly bound/unbound nuclei. A sensitive probe of such
modifications is the spectroscopic factor. In this study, we
investigate the p3/2 spectroscopic factor S(0+, p3/2) for

the two lowest 0+ states of 6He:

S
(
0+i , p3/2

)
=

<

[
∑

k

(
〈6He(0+i )|

[
|5Heg.s.〉 ⊗ |p3/2(k)〉

]
J=0

)2
]
, (5)

where i = 1, 2 and the sum runs over all |p3/2(k)〉 states,
i.e., both the 0p3/2 pole and the non-resonant p3/2 contin-
uum. (It is to be noted that the Gamow states are normal-
ized using the squared wave function and not the modulus
of the squared wave function.) The spectroscopic factors
are very sensitive to discretization effects. Below, we take
26 points for the p3/2 contour, and 14 points for the p1/2
complex contour. The 0p1/2 resonant state has to be in-

cluded, as the 0+2 state of 6He in the pole approximation
is built from two neutrons in 0p1/2.

In the quasi-stationary approach with Gamow states,
the spectroscopic factor (5) is, in general, complex. An
interpretation of these complex values has been given by
Berggren [17]: the real part of the matrix element can be
associated with the average value, while the imaginary
part represents the uncertainty of the mean value. There-
fore, if the overlap matrix element has a large imaginary
value, the spectroscopic factor can become negative.

Figure 1 shows the spectroscopic factor of the 6He g.s.
in the [|5He〉 ⊗ |p3/2〉]0 channel as a function of the po-

sition of the 0p3/2 pole of the S-matrix in 5He. (The en-
ergy of the 0p3/2 pole is varied by changing the depth
of the central part of the WS potential.) The results of
the full GSM calculations in the model space, which in-
cludes 0p3/2, 0p1/2 s.p. resonances and the states of the
discretized complex continuum, exhibit an intricate de-
pendence on the position of the 0p3/2 pole. If the 0p3/2
s.p. state of 5He is bound, the spectroscopic factor de-
creases smoothly when 0p3/2 approaches the continuum
threshold. At the threshold, where the coupling to the non-
resonant continuum is strongest, the spectroscopic factor
reaches its lowest value. The behavior of the spectroscopic
factor changes dramatically if 0p3/2 becomes a resonance,
as it grows with increasing energy of the 0p3/2 state. This
is an illustration of how strongly the analytic features of
the S-matrix may influence the spectroscopic observables
in a weakly bound system.

The role of the completeness of the s.p. basis can be
assessed by comparing results of the full GSM calculation
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Fig. 1. Spectroscopic factor of the 6He ground state in the
[|5He〉 ⊗ |p3/2〉]0 channel as a function of the energy of the
0p3/2 s.p. state in 5He. Thick solid line: GSM results; thin
solid line: the equivalent SM results in the HO-SM approxi-
mation; dashed line: restricted GSM calculations in the pole
approximation, i.e., including resonances 0p3/2 and 0p1/2 only.

with the results obtained in the pole approximation (pole-
GSM), where the basis states of the non-resonant contin-
uum are neglected. In the latter case, the spectroscopic
factor changes smoothly with the energy of the 0p3/2 state.
This clearly demonstrates that the complicated depen-
dence of the spectroscopic factor found in GSM is the
result of an interplay between discrete states and the non-
resonant continuum states in the many-body wave func-
tion of 6He.

To compare the GSM results with the results of the
standard SM procedure, we performed calculations in the
harmonic oscillator basis. The s.p. energies in such “equiv-
alent SM calculations” (HO-SM approximation) are given
by the real parts of 0p1/2 and 0p3/2 eigenvalues of the WS
potential generating the GSM basis. Such equivalent SM
calculation yields, as expected, a smooth and monotonic
energy variation of the spectroscopic factor. The GSM re-
sults are close to the HO-SM results for well bound 0p3/2
s.p. state, i.e., when the coupling to the non-resonant con-
tinuum states is weak. On the contrary, the difference be-
tween GSM and HO-SM is strongest if the 0p3/2 pole lies
at the threshold.

It is worth noting that there is a significant difference
between the results of HO-SM and pole-GSM calculations.
In both cases, the dimension of the model space is iden-
tical but the radial wave functions used to calculate the
matrix elements of the two-body Hamiltonian are differ-
ent. In particular, the 0p1/2 s.p. state is a broad resonance
in GSM, and the matrix elements of the SGI interaction
involving this state are noticeably reduced as compared
to the HO-SM variant. Consequently, the configuration
mixing in the (0p3/20p1/2) space is stronger in HO-SM.

Figure 2 shows the spectroscopic factor (5) for the first
excited 0+2 state of 6He. There are only two 0+ states in
the (0p3/20p1/2) model space of HO-SM and pole-GSM;
hence the results of figs. 1 and 2 are strongly correlated.
(The sum of both spectroscopic factors is equal to one.)
A small value of the spectroscopic factor in GSM cannot
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Fig. 2. The same as in fig. 1 except for the second 0+ excited
state of the 6He.

be explained in the same way. In fact, the configura-
tions involving a 0p3/2 s.p. state (bound or resonance)

are spread over a huge number of excited 0+ states, all
of them unbound, having a dominant contribution from
the non-resonant continuum basis states. Consequently,
the spectroscopic factor is mainly concentrated in a sin-
gle state, the g.s. of 6He in the present case, and other
0+ states have negligibly small amplitudes. For the bound
0p3/2 s.p. state, the maximum value of the spectroscopic

factor in the distribution over all 0+ states decreases when
0p3/2 approaches the continuum threshold.

The mechanism of concentration of the spectroscopic
factor in a single state discussed in this section is a gen-
uine effect of the strong coupling to the continuum. Going
away from the valley of stability towards drip lines, one
should expect to see a gradual reduction of the spreading
of spectroscopic factors over different Jπ, T states, which
is characteristic of the gradual evolution of correlations
in the many-body system due to the enhanced continuum
coupling. Obviously, the description of such an evolution
is beyond the scope of the standard SM.

6 Application of the density matrix

renormalization group techniques for solving

the GSM problem

The complex Berggren ensemble of the GSM con-
tains many states representing a discretized non-resonant
continuum. Consequently, the dimension of the (non-
Hermitian) GSM Hamiltonian matrix grows extremely
fast with the number of active shells, and this “explo-
sive” growth is much more severe than in the standard
SM which deals with the pole space only. In practice, most
of the configurations involving many nucleons in the non-
resonant continuum contribute very little to wave func-
tions of low-energy physical states which are dominated
by the pole space configurations and by configurations
with a small number of nucleons in the non-resonant states
in the neighborhood of these pole states. This feature of
GSM calls for a development of a procedure for selecting
the most important configurations involving continuum

states. A promising approach is the DMRG method devel-
oped originally in the context of quantum lattices [18] and
recently applied to SM problems with schematic Hamilto-
nians [19]. The main idea is to gradually consider different
s.p. shells in the configuration space and retain only Nopt

the most optimal states dictated by the one-body den-
sity matrix. Below, we shall discuss the application of the
DMRG method to the g.s. configuration of 6He in GSM.
In this case, the configuration space is divided into two
subspaces: A (s.p. resonances 0pα, α = 1/2, 3/2) and B
(s.p. states/shells representing the non-resonant continua
{pα}, α = 1/2, 3/2). In the initial phase (the warm-up
phase), one calculates and stores all the possible matrix
elements of suboperators of the Hamiltonian in A:

a†,
(
a† ã

)K
,
(
a†a†

)K
,
((
a†a†

)K
ã
)L

,
((
a†a†

)K(
ãã
)K)

,

and constructs all the states |k〉 with 0, 1, 2 particles cou-
pled to all possible j-values. Then, from each continuum
{pα}, one picks up a s.p. state, calculates for this added
pair of shells the matrix elements of suboperators, and
constructs all the states |i〉 with 0, 1, 2 particles coupled
to all possible j-values. In the following, one adds “one by
one” pairs of s.p. states in B and repeats the procedure
until the number of states |i〉 is larger than Nopt. Then
the Hamiltonian is diagonalized in the space {|k〉A|i〉B}

J

made of vectors in A and B. Obviously, the number of
particles in such states is equal to the total number of va-
lence particles, and J is equal to the angular momentum
of the state of interest (J = 0). From the eigenstates

|Ψ〉 =
∑

cki{|k〉A|i〉B}
J , (6)

one calculates the one-body density matrix,

ρBii′ =
∑

k

ckicki′ , (7)

in different blocks with a fixed value of j in states |i〉, |i′〉.
The density matrix is then blockwise diagonalized and
Nopt eigenstates |uν〉 having the largest eigenvalues ωBν
are retained. (In GSM, eigenvalues of the density matrix
are complex and the eigenstates of ρB are selected ac-
cording to the largest absolute value of the density eigen-
values.) Those eigenvalues correspond to the most impor-
tant states of the enlarged set. All the matrix elements
of suboperators for the optimized states are recalculated;
they are linear combinations of previously calculated ma-
trix elements. Then, the next pair of non-resonant contin-
uum states is added and, again, only the Nopt states are
kept. This procedure is repeated until the last shell in B
is reached, providing a “first guess” for the wave function
of the system.

This ends a warm-up phase, and a sweeping phase be-
gins. At this point, one constructs states with 0, 1, 2 parti-
cles and then the process continues in the reverse direction
until the number of vectors becomes larger than Nopt. If
the m-th shell in B is reached, the Hamiltonian is diag-
onalized in the set of vectors: {|k, iprev〉|i〉}

J , where iprev
is a previously optimized state (first m− 1 p-shells in B),
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Fig. 3. The relative difference between the exact g.s. GSM en-
ergy of 6He (εexact) and the energy of this state calculated in
GSM + DMRG approach (εDMRG) as a function of the number
of iteration steps. Solid (dashed) line marks the real (imagi-
nary) part of the GSM + DMRG energy. See text for details.

and i is a new state (i > m). The density matrix is then
diagonalized and the Nopt i-states are kept. The proce-
dure continues by adding the (m − 1)-th pair of shells,
etc., until the first state in B is reached. Then the pro-
cedure is reversed again: the first pair of shells is added,
then the second, the third, etc. The succession of sweeps
is successful if the energy converges.

Figure 3 illustrates the convergence of real and imag-
inary parts of the g.s. energy of 6He calculated in
the DMRG procedure as a function of the number of
steps, Nstep. In this example, the number of shells included
in blocks A and B are 2 and 50, respectively. At each step
we keep Nopt = 6 states. For these parameters, the warm-
up phase is completed in 25 steps, and fully converged
GSM + DMRG results are found in 15 steps, i.e. in less
than one sweep. This example demonstrates that a finite-
system algorithm of DMRG is very efficient in selecting
the most important GSM continuum configurations. In
the considered example, a total dimension D of the GSM
Hamiltonian is 702, and the rank of the biggest matrix
to be diagonalized in GSM + DMRG is d = 32. The gain
factor D/d grows very fast with the number of valence par-
ticles and with the number of shells in the non-resonant
continuum (B block).

7 Conclusion

Coupling to the non-resonant continuum and the multi-
configuration mixing can be consistently described in the
framework of the GSM. The explosive growth of dimen-
sionality in GSM, associated with the inclusion of a large
number of states in the non-resonant continuum, can be

strongly reduced by applying techniques of the DMRG in
solving the GSM problem. The novel feature of GSM, ab-
sent in the standard SM, is a strong influence of S-matrix
poles on the weakly bound/unbound many-body states.
For the low-` orbits (` = 0, 1), the continuum coupling
may induce the instability of the HF vacuum and non-
perturbative rearrangement of the wave function. We have
demonstrated that this effect can be seen in the properties
of spectroscopic factors. A similar mechanism may also
influence the spin-orbit effects, pair-transfer amplitudes,
nuclear collectivity, and properties of nuclear excitations.
Further systematic investigations of weakly bound nuclei,
both experimentally and theoretically, will undoubtedly
shed new light on the salient features of the continuum
coupling and will identify the most pertinent observables
affected by a gradual appearance of open channels when
moving towards particle drip lines.
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